Dimensionless numbers in fluid mechanics
Dimensionless numbers in fluid mechanics are a set of dimensionless quantities that have an important role in the behaviour of fluids.
Diffusive Numbers in Transport Phenomena
vs. | Inertial | Viscous | Thermal | Mass |
---|---|---|---|---|
Inertial | vd | Re | Pe | PeAB |
Viscous | Re−1 | η, μ/ρ | Pr | Sc |
Thermal | Pe−1 | Pr−1 | α | Le |
Mass | PeAB−1 | Sc−1 | Le−1 | D |
The classical numbers in transport phenomena of mass, momentum, and energy are principally analyzed by the ratio of effective diffusivities in each transport mechanism. The six dimensionless numbers give the relative strengths of the different phenomena of inertia, viscosity, conductive heat transport, and mass transport.
Droplet formation
vs. | Momentum | Viscosity | Surface tension | Gravity | Kinetic energy |
---|---|---|---|---|---|
Momentum | ρvd | Re | Fr | ||
Viscosity | Re−1 | ρη, μ | Oh, Ca | Ga−1 | |
Surface tension | Oh−1, Ca−1 | σ | Bo−1 | We−1 | |
Gravity | Fr−1 | Ga | Bo | g | |
Kinetic energy | We | ρv2d |
Droplet formation mostly depends on momentum, viscosity and surface tension.[1] In inkjet printing for example, an ink with a too high Ohnesorge number would not jet properly, and an ink with a too low Ohnesorge number would be jetted with many satellite drops.[2]
List
All numbers are dimensionless quantities. See other article for extensive list of dimensionless quantities. Certain dimensionless quantities of some importance to fluid mechanics are given below:
References
- ↑ Dijksman, J. Frits; Pierik, Anke (2014). "Dynamics of Piezoelectric Print-Heads": 45–86. doi:10.1002/9781118452943.ch3.
- ↑ Derby, Brian (2010). "Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution". Annual Review of Materials Research. 40 (1): 395–414. doi:10.1146/annurev-matsci-070909-104502. ISSN 1531-7331.
- ↑ Bhattacharjee S., Grosshandler W.L. (1988). "The formation of wall jet near a high temperature wall under microgravity environment". ASME MTD. 96: 711–6.
- 1 2 "Table of Dimensionless Numbers" (PDF). Retrieved 2009-11-05.
- ↑ Bond number
- ↑ "Home". OnePetro. 2015-05-04. Retrieved 2015-05-08.
- ↑ Schetz, Joseph A. (1993). Boundary Layer Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc. pp. 132–134. ISBN 0-13-086885-X.
- ↑ Fanning friction factor
- ↑ Tan, R. B. H.; Sundar, R. (2001). "On the froth–spray transition at multiple orifices". Chemical Engineering Science. 56 (21–22): 6337. doi:10.1016/S0009-2509(01)00247-0.
- ↑ Lockhart–Martinelli parameter
- ↑ "Manning coefficient" (PDF). (109 KB)
- ↑ Richardson number
- ↑ Schmidt number
- ↑ Sommerfeld number
- ↑ Petritsch, G.; Mewes, D. (1999). "Experimental investigations of the flow patterns in the hot leg of a pressurized water reactor". Nuclear Engineering and Design. 188: 75. doi:10.1016/S0029-5493(99)00005-9.
- ↑ Kuneš, J. (2012). "Technology and Mechanical Engineering". Dimensionless Physical Quantities in Science and Engineering. pp. 353–390. doi:10.1016/B978-0-12-416013-2.00008-7. ISBN 978-0-12-416013-2.
- ↑ Weissenberg number
- ↑ Womersley number
- Tropea, C.; Yarin, A.L.; Foss, J.F. (2007). Springer Handbook of Experimental Fluid Mechanics. Springer-Verlag.