Timeline of numerical analysis after 1945

The following is a timeline of numerical analysis after 1945, and deals with developments after the invention of the modern electronic computer, which began during Second World War. For a fuller history of the subject before this period, see timeline and history of mathematics.

1940s

1950s

1960s

1980s

See also


References

  1. Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125.. Accessed 5 may 2012.
  2. S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
  3. N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335–341.
  4. Crank, J. (John); Nicolson, P. (Phyllis) (1947). "A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type". Proc. Camb. Phil. Soc. 43 (1): 5067. doi:10.1007/BF02127704. Retrieved 17 October 2013.
  5. "SIAM News, November 1994.". Retrieved 6 June 2012. Hosted at Systems Optimization Laboratory, Stanford University, Huang Engineering Center.
  6. A. M. Turing, Rounding-off errors in matrix processes. Quart. J Mech. Appl. Math. 1 (1948), 287–308 (according to Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Canada: Thomson Brooks/Cole, ISBN 0-534-99845-3.) .
  7. Young, David M. (May 1, 1950), Iterative methods for solving partial difference equations of elliptical type (PDF), PhD thesis, Harvard University, retrieved 15 June 2009
  8. Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409–436 (1952).
  9. Eduard Stiefel,U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1–33 (1952).
  10. Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33–53 (1952).
  11. Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255–282 (1950).
  12. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953): Equations of State Calculations by Fast Computing Machines (Retrieved 3 May 2012). Journal of Chemical Physics 21 (6): 1087–1092. Bibcode 1953JChPh..21.1087M. doi:10.1063/1.1699114.
  13. Householder, A. S. (1958). "Unitary Triangularization of a Nonsymmetric Matrix". Journal of the ACM. 5 (4): 339342. doi:10.1145/320941.320947. MR 0111128.
  14. J.G.F. Francis, "The QR Transformation, I", The Computer Journal, 4(3), pages 265–271 (1961, received October 1959) online at oxfordjournals.org;J.G.F. Francis, "The QR Transformation, II" The Computer Journal, 4(4), pages 332–345 (1962) online at oxfordjournals.org.
  15. Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).
  16. RW Clough, “The Finite Element Method in Plane Stress Analysis,” Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.
  17. P.D Lax; B. Wendroff (1960). "Systems of conservation laws". Commun. Pure Appl Math. 13 (2): 217–237. doi:10.1002/cpa.3160130205.
  18. Cooley, James W., and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, 297–301 (1965).
  19. M Abramowitz and I Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Publisher: Dover Publications. Publication date: 1964; ISBN 0-486-61272-4;OCLC Number:18003605 .
  20. MacCormack, R. W., The Effect of viscosity in hypervelocity impact cratering, AIAA Paper, 69-354 (1969).
  21. L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
  22. Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
  23. L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
  24. Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (1986). Numerical Recipes: The Art of Scientific Computing. New York: Cambridge University Press. ISBN 0-521-30811-9.

External links

This article is issued from Wikipedia - version of the 11/1/2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.