Test functions for optimization

In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as:

Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented. In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given.

The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck,[1] Haupt et al.[2] and from Rody Oldenhuis software.[3] Given the amount of problems (55 in total), just a few are presented here. The complete list of test functions is found on the Mathworks website.[4]

The test functions used to evaluate the algorithms for MOP were taken from Deb,[5] Binh et al.[6] and Binh.[7] You can download the software developed by Deb,[8] which implements the NSGA-II procedure with GAs, or the program posted on Internet,[9] which implements the NSGA-II procedure with ES.

Just a general form of the equation, a plot of the objective function, boundaries of the object variables and the coordinates of global minima are given herein.

Test functions for single-objective optimization problems

Name Plot Formula Minimum Search domain
Rastrigin function

Ackley's function

Sphere function ,
Rosenbrock function ,
Beale's function

Goldstein–Price function

Booth's function
Bukin function N.6 ,
Matyas function
Lévi function N.13

Three-hump camel function
Easom function
Cross-in-tray function
Eggholder function
Hölder table function
McCormick function ,
Schaffer function N. 2
Schaffer function N. 4
Styblinski–Tang function , .
Simionescu function[10] ,

Test functions for multi-objective optimization problems

Name Plot Functions Constraints Search domain
Binh and Korn function: ,
Chakong and Haimes function:
Fonseca and Fleming function: ,
Test function 4:[7]
Kursawe function: , .
Schaffer function N. 1: . Values of from to have been used successfully. Higher values of increase the difficulty of the problem.
Schaffer function N. 2: .
Poloni's two objective function:

Zitzler–Deb–Thiele's function N. 1: , .
Zitzler–Deb–Thiele's function N. 2: , .
Zitzler–Deb–Thiele's function N. 3: , .
Zitzler–Deb–Thiele's function N. 4: , ,
Zitzler–Deb–Thiele's function N. 6: , .
Viennet function: .
Osyczka and Kundu function: , , .
CTP1 function (2 variables):[5] .
Constr-Ex problem:[5] ,

See also

Wikimedia Commons has media related to Test functions (mathematical optimization).

References

  1. Bäck, Thomas (1995). Evolutionary algorithms in theory and practice : evolution strategies, evolutionary programming, genetic algorithms. Oxford: Oxford University Press. p. 328. ISBN 0-19-509971-0.
  2. Haupt, Randy L. Haupt, Sue Ellen (2004). Practical genetic algorithms with CD-Rom (2nd ed.). New York: J. Wiley. ISBN 0-471-45565-2.
  3. Oldenhuis, Rody. "Many test functions for global optimizers". Mathworks. Retrieved 1 November 2012.
  4. Ortiz, Gilberto A. "Evolution Strategies (ES)". Mathworks. Retrieved 1 November 2012.
  5. 1 2 3 4 5 Deb, Kalyanmoy (2002) Multiobjective optimization using evolutionary algorithms (Repr. ed.). Chichester [u.a.]: Wiley. ISBN 0-471-87339-X.
  6. Binh T. and Korn U. (1997) MOBES: A Multiobjective Evolution Strategy for Constrained Optimization Problems. In: Proceedings of the Third International Conference on Genetic Algorithms. Czech Republic. pp. 176–182
  7. 1 2 3 Binh T. (1999) A multiobjective evolutionary algorithm. The study cases. Technical report. Institute for Automation and Communication. Barleben, Germany
  8. Deb K. (2011) Software for multi-objective NSGA-II code in C. Available at URL:http://www.iitk.ac.in/kangal/codes.shtml. Revision 1.1.6
  9. Ortiz, Gilberto A. "Multi-objective optimization using ES as Evolutionary Algorithm.". Mathworks. Retrieved 1 November 2012.
  10. Simionescu, P.A. (2014). Computer Aided Graphing and Simulation Tools for AutoCAD Users (1st ed.). Boca Raton, FL: CRC Press. ISBN 978-1-4822-5290-3.
This article is issued from Wikipedia - version of the 10/7/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.