Petkovšek's algorithm
Petkovšek's algorithm is a computer algebra algorithm that computes a basis of hypergeometric terms solution of its input linear recurrence equation with polynomial coefficients. Equivalently, it computes a first order right factor of linear difference operators with polynomial coefficients. This algorithm is implemented in all the major computer algebra systems.
Examples
- Given the linear recurrence
the algorithm finds two linearly independent hypergeometric terms that are solution:
(Here, denotes Euler's Gamma function.) Note that the second solution is also a binomial coefficient , but it is not the aim of this algorithm to produce binomial expressions.
- Given the sum
coming from Apéry's proof of the irrationality of , Zeilberger's algorithm computes the linear recurrence
Given this recurrence, the algorithm does not return any hypergeometric solution, which proves that does not simplify to a hypergeometric term.
References
- Burchnall, J. L. (1942). "Differential equations associated with Hypergeometric Functions". Quart. J. Math. 13. pp. 90–106. doi:10.1093/qmath/os-13.1.90. MR 0007820.
- Zeilberger, Doron (1991). "The method of creative telescoping". J. Symb. Comp. 11 (3). pp. 195–204. doi:10.1016/S0747-7171(08)80044-2.
- Petkovsek, Marco (1992). "Hypergeometric solutions of linear recurrences with polynomial coefficients". J. Symb. Comput. 14 (2-3). pp. 243––264. doi:10.1016/0747-7171(92)90038-6. MR 1187234.
- Petkovsek, Marko; Wilf, Herbert; Zeilberger, Doron (1996). "A = B".
- Cluzeau, Thomas; van Hoeij, Mark (2006). "Computing hypergeometric solutions of linear recurrence equations". Appl. Alg. Engin. Commun. Comp. 17 (2). pp. 83–115. doi:10.1007/s00200-005-0192-x. MR 2233774.
- Zeilberger, Doron (2006). "A fast algorithm for proving terminating hypergeometric identities". Discr. Math. 306 (10-11). pp. 1072–1075. doi:10.1016/j.disc.2006.03.026.
- Zarzo, A.; Yanez, R. J.; Dehesa, J. S. (2007). "General recurrence and ladder relations of hypergeometric-type functions". J. Comput. Appl. Math. 207 (2). pp. 166–179. doi:10.1016/j.cam.2006.10.012.
- Apagodu, Moa; Zeilberger, Doron (2008). "Searching for strange hypergeometric identities by sheer brute force". INTEGERS: El. J. Combin. Numb. Theory. 8. pp. A38.