Petkovšek's algorithm

Petkovšek's algorithm is a computer algebra algorithm that computes a basis of hypergeometric terms solution of its input linear recurrence equation with polynomial coefficients. Equivalently, it computes a first order right factor of linear difference operators with polynomial coefficients. This algorithm is implemented in all the major computer algebra systems.

Examples

the algorithm finds two linearly independent hypergeometric terms that are solution:

(Here, denotes Euler's Gamma function.) Note that the second solution is also a binomial coefficient , but it is not the aim of this algorithm to produce binomial expressions.

coming from Apéry's proof of the irrationality of , Zeilberger's algorithm computes the linear recurrence

Given this recurrence, the algorithm does not return any hypergeometric solution, which proves that does not simplify to a hypergeometric term.

References

This article is issued from Wikipedia - version of the 7/12/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.