Multi-Mission Radioisotope Thermoelectric Generator

Diagram of a MMRTG

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is a type of Radioisotope Thermoelectric Generator developed for NASA space missions[1] such as the Mars Science Laboratory (MSL), under the jurisdiction of the United States Department of Energy's Office of Space and Defense Power Systems within the Office of Nuclear Energy. The MMRTG was developed by an industry team of Aerojet Rocketdyne and Teledyne Energy Systems.

Background

Space exploration missions require safe, reliable, long-lived power systems to provide electricity and heat to spacecraft and their science instruments. A uniquely capable source of power is the Radioisotope Thermoelectric Generator (RTG) – essentially a nuclear battery that reliably converts heat into electricity.[2]

Function

RTGs convert the heat from the natural decay of a radioisotope into electricity. The MMRTG's heat source is plutonium-238 dioxide. Solid-state thermoelectric couples convert the heat to electricity.[3] Unlike solar arrays, the RTGs are not dependent upon the Sun, so they can be used for deep space missions.

History

In June 2003, the Department of Energy (DOE) awarded the MMRTG contract to a team led by Aerojet Rocketdyne. Aerojet Rocketdyne and Teledyne Energy Systems collaborated on an MMRTG design concept based on a previous thermoelectric converter design, SNAP-19, developed by Teledyne for previous space exploration missions.[4] SNAP-19s powered Pioneer 10 and Pioneer 11 missions[3] as well as the Viking 1 and Viking 2 landers.

Design and specifications

The MMRTG is powered by 8 Pu-238 dioxide General Purpose Heat Source (GPHS) modules, provided by the Department of Energy. Initially, these 8 GPHS modules generate about 2 kW thermal power.

The MMRTG design incorporates PbTe/TAGS thermoelectric couples (from Teledyne Energy Systems). The MMRTG is designed to produce 125 W electrical power at the start of mission, falling to about 100 W after 14 years.[5] With a mass of 45 kg[6] the MMRTG provides about 2.8 W/kg of electrical power at beginning of life.

The MMRTG design is capable of operating both in the vacuum of space and in planetary atmospheres, such as on the surface of Mars. Design goals for the MMRTG included ensuring a high degree of safety, optimizing power levels over a minimum lifetime of 14 years, and minimizing weight.[2]

Usage in space missions

The Multi-Mission Radioisotope Thermoelectric Generator of Mars Science Laboratory.

Curiosity, the MSL rover that was successfully landed in Gale Crater on August 6, 2012, uses one MMRTG to supply heat and electricity for its components and science instruments. Reliable power from the MMRTG will allow it to operate for several years.[2]

In February 20, 2015, a NASA official reported that there is enough plutonium available to NASA to fuel three more MMRTG like the one used by the Curiosity rover.[7][8] One is already committed to the Mars 2020 rover.[7] The other two have not been assigned to any specific mission or program,[8] and could be available by late 2021.[7]

See also

References

Wikimedia Commons has media related to Radioisotope thermoelectric generators.
This article is issued from Wikipedia - version of the 9/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.