Hexagonal tiling-triangular tiling honeycomb

Hexagonal tiling-triangular tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbol{(3,6,3,6)} or {(6,3,6,3)}
Coxeter diagrams or or or
Cells{3,6}
{6,3}
r{6,3}
Facestriangular {3}
square {4}
hexagon {6}
Vertex figure
rhombitrihexagonal tiling
Coxeter group[(6,3)[2]]
PropertiesVertex-uniform, edge-uniform

In the geometry of hyperbolic 3-space, the hexagonal tiling-triangular tiling honeycomb is a paracompact uniform honeycomb, constructed from triangular tiling, hexagonal tiling, and trihexagonal tiling cells, in a rhombitrihexagonal tiling vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

A lower symmetry form, index 6, of this honeycomb can be constructed with [(6,3,6,3*)] symmetry, represented by a cube fundamental domain, and an octahedral Coxeter diagram .

Related honeycombs

The cyclotruncated octahedral-hexagonal tiling honeycomb, has a higher symmetry construction as the order-4 hexagonal tiling.

See also

References

This article is issued from Wikipedia - version of the 10/8/2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.