HIRA

HIRA
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
Aliases HIRA, DGCR1, TUP1, TUPLE1, histone cell cycle regulator
External IDs MGI: 99430 HomoloGene: 48172 GeneCards: HIRA
RNA expression pattern
More reference expression data
Orthologs
Species Human Mouse
Entrez

7290

15260

Ensembl

ENSG00000100084

ENSMUSG00000022702

UniProt

P54198

Q61666

RefSeq (mRNA)

NM_003325

NM_001005228
NM_010435

RefSeq (protein)

NP_003316.3

NP_034565.2

Location (UCSC) Chr 22: 19.33 – 19.45 Mb Chr 16: 18.88 – 18.97 Mb
PubMed search [1] [2]
Wikidata
View/Edit HumanView/Edit Mouse

Protein HIRA is a protein that in humans is encoded by the HIRA gene.[3][4][5][6] This gene is mapped to 22q11.21, centromeric to COMT.[6]

Function

The specific function of this protein has yet to be determined; however, it has been speculated to play a role in transcriptional regulation and/or chromatin and histone metabolism.[6]

Research done by Salomé Adam, Sophie E. Polo, and Geneviève Almouzni indicate that HIRA proteins are involved in restarting transcription after UVC damage[7]

Clinical significance

It is considered the primary candidate gene in some haploinsufficiency syndromes such as DiGeorge syndrome, and insufficient production of the gene may disrupt normal embryonic development.[6]

Model organisms

Model organisms have been used in the study of HIRA function. A conditional knockout mouse line, called Hiratm1a(EUCOMM)Wtsi[12][13] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[14][15][16]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[10][17] Twenty two tests were carried out on mutant mice and two significant abnormalities were observed.[10] No homozygous mutant mice survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and a decreased leukocyte cell number was recorded in male animals.[10]

Interactions

HIRA has been shown to interact with HIST1H2BK.[18]

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. Halford S, Wadey R, Roberts C, Daw SC, Whiting JA, O'Donnell H, Dunham I, Bentley D, Lindsay E, Baldini A (Mar 1994). "Isolation of a putative transcriptional regulator from the region of 22q11 deleted in DiGeorge syndrome, Shprintzen syndrome and familial congenital heart disease". Hum Mol Genet. 2 (12): 2099–107. doi:10.1093/hmg/2.12.2099. PMID 8111380.
  4. Lamour V, Lécluse Y, Desmaze C, Spector M, Bodescot M, Aurias A, Osley MA, Lipinski M (Sep 1995). "A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region". Hum Mol Genet. 4 (5): 791–9. doi:10.1093/hmg/4.5.791. PMID 7633437.
  5. Magnaghi P, Roberts C, Lorain S, Lipinski M, Scambler PJ (Oct 1998). "HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3". Nat Genet. 20 (1): 74–7. doi:10.1038/1739. PMID 9731536.
  6. 1 2 3 4 "Entrez Gene: HIRA HIR histone cell cycle regulation defective homolog A (S. cerevisiae)".
  7. Adam, S., Polo, S. E., & Almouzni, G. (2013). Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA. Cell, 155(1), 94-106. Retrieved from http://www.cell.com/abstract/S0092-8674(13)01023-4
  8. "Haematology data for Hira". Wellcome Trust Sanger Institute.
  9. "Salmonella infection data for Hira". Wellcome Trust Sanger Institute.
  10. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  11. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  12. "International Knockout Mouse Consortium".
  13. "Mouse Genome Informatics".
  14. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750.
  15. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  16. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  17. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837Freely accessible. PMID 21722353.
  18. Lorain S, Quivy JP, Monier-Gavelle F, Scamps C, Lécluse Y, Almouzni G, Lipinski M (September 1998). "Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA". Mol. Cell. Biol. 18 (9): 5546–56. PMC 109139Freely accessible. PMID 9710638.

Further reading

This article is issued from Wikipedia - version of the 5/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.