Gliese 832
Observation data Epoch J2000.0 Equinox J2000.0 | |
---|---|
Constellation | Grus |
Right ascension | 21h 33m 33.975s[1] |
Declination | −49° 00′ 32.42″[1] |
Apparent magnitude (V) | 8.66[2] |
Characteristics | |
Spectral type | M2V[3] |
B−V color index | 1.52[2] |
Astrometry | |
Radial velocity (Rv) | 18.0 km/s |
Proper motion (μ) | RA: −46.05 ± 0.95[1] mas/yr Dec.: −817.63 ± 0.59[1] mas/yr |
Parallax (π) | 201.87 ± 1.01[1] mas |
Distance | 16.16 ± 0.08 ly (4.95 ± 0.02 pc) |
Absolute magnitude (MV) | 10.19[2] |
Details | |
Mass | 0.45 ± 0.05[2] M☉ |
Radius | 0.48[4] R☉ |
Luminosity (bolometric) | 0.035[note 1] Gyr |
Other designations | |
Database references | |
SIMBAD | The star |
planet c | |
planet b | |
Exoplanet Archive | data |
Extrasolar Planets Encyclopaedia | data |
Data sources: | |
Hipparcos Catalogue, HD |
Gliese 832 (Gl 832 or GJ 832) is a red dwarf of spectral type M2V in the southern constellation Grus.[8] The apparent visual magnitude of 8.66[2] means that it is too faint to be seen with the naked eye. It is located relatively close to the Sun, at a distance of 16.1 light years[8] and has a high proper motion of 818.93 mas per year.[9] Gliese 832 has just under half the mass and radius of the Sun.[8] Its estimated rotation period is a relatively leisurely 46 days.[3] The star is roughly 9.5 billion years old.[10]
In 2014, Gliese 832 was announced to be hosting the closest potentially habitable Earth-mass-range exoplanet to the Solar System.[8] This star achieved perihelion some 52,920 years ago when it came within an estimated 15.71 ly (4.817 pc) of the Sun.[9]
Planetary system
Gliese 832 hosts two known planets.
Discovery of Jupiter mass planet
In September 2008, it was announced that a Jupiter-like planet, now designated as Gliese 832 b, had been detected in a long-period, near-circular orbit around this star (false alarm probability thus far: a negligible 0.05%). It would induce an astrometric perturbation on its star of at least 0.95 milliarcseconds and is thus a good candidate for being detected by astrometric observations. Despite its relatively large angular distance, direct imaging is problematic due to the star–planet contrast.[2]
Discovery of Gliese 832 c (super-Earth mass planet) in habitable zone
In 2014, a second planet was discovered by astronomers at the University of New South Wales. This one is believed to be of super-Earth mass[8] and has since been given the scientific name Gliese 832 c.[8] It was announced to orbit in the optimistic habitable zone but outside the conservative habitable zone of its parent star.[11]
The planet is believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface.[8]
Search for cometary disc
If this system has a comet disc, it is undetectable "brighter than the fractional dust luminosity 10−5" of a recent Herschel study.[12]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
c | ≥5.4±1 M⊕ | 0.162±0-017 | 35.68±0.03 | 0.18 ± 0.13 | — | — |
b | ≥0.64 ± 0.06 MJ | 3.4 ± 0.4 | 3416 ± 131 | 0.12 ± 0.11 | — | — |
X-ray source
Gliese 832 emits X-rays.[13]
See also
Notes
- ↑ Using the absolute visual magnitude of Gliese 832 with a bolometric correction of [5] the bolometric magnitude can be calculated as , the bolometric magnitude of the Sun ,[6] and so therefore the bolometric luminosity can be calculated by </ref> L☉Luminosity (visual, LV)0.007[note 2] L☉Surface gravity (log g)4.7[2] cgsTemperature3,620[7] KMetallicity−0.31 ± 0.2[2]Rotation±9.3 d 45.7[3]Age9.24<ref name='age'>Safonova, M.; Murthy, J.; Shchekinov, Yu. A. (2014). "Age Aspects of Habitability". International Journal of Astrobiology. 15 (2): 93–105. arXiv:1404.0641. doi:10.1017/S1473550415000208.
- ↑ Using the absolute visual magnitude of Gliese 832 and the absolute visual magnitude of the Sun , the visual luminosity can be calculated by
References
- 1 2 3 4 5 van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction" (PDF). Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. Vizier catalog entry
- 1 2 3 4 5 6 7 8 Bailey, J.; Butler, R. P.; Tinney, C. G.; Jones, H. R. A.; O'Toole, S.; Carter, B. D.; Marcy, G. W. (2008). "A Jupiter-like Planet Orbiting the Nearby M Dwarf GJ832". The Astrophysical Journal. 690 (1): 743–747. arXiv:0809.0172. Bibcode:2009ApJ...690..743B. doi:10.1088/0004-637X/690/1/743.
- 1 2 3 Suárez Mascareño, A.; et al. (September 2015), "Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators", Monthly Notices of the Royal Astronomical Society, 452 (3): 2745−2756, arXiv:1506.08039, Bibcode:2015MNRAS.452.2745S, doi:10.1093/mnras/stv1441.
- ↑ Johnson, H. M.; Wright, C. D. (1983). "Predicted infrared brightness of stars within 25 parsecs of the sun". The Astrophysical Journal Supplement Series. 53: 643–771. Bibcode:1983ApJS...53..643J. doi:10.1086/190905.
- ↑ Flower, Phillip J. (September 1996). "Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections". The Astrophysical Journal. 469: 355. Bibcode:1996ApJ...469..355F. doi:10.1086/177785.
- ↑ Torres, Guillermo (November 2010). "On the Use of Empirical Bolometric Corrections for Stars". The Astronomical Journal. 140 (5): 1158–1162. arXiv:1008.3913. Bibcode:2010AJ....140.1158T. doi:10.1088/0004-6256/140/5/1158. Lay summary.
- ↑ Interpolated value from NASA Exoplanet Archive, per: Bessell, M. S. (1995). "The Temperature Scale for Cool Dwarfs". In Tinney, C. G. The Bottom of the Main Sequence - and Beyond, Proceedings of the ESO Workshop. Springer-Verlag. p. 123. Bibcode:1995bmsb.conf..123B.
- 1 2 3 4 5 6 7 "Nearby Alien Planet May Be Capable of Supporting Life", Mike Wall, Space.com, June 25, 2014, http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html
- 1 2 Bailer-Jones, C. A. L. (March 2015), "Close encounters of the stellar kind", Astronomy & Astrophysics, 575: 13, arXiv:1412.3648, Bibcode:2015A&A...575A..35B, doi:10.1051/0004-6361/201425221, A35.
- ↑
- ↑ Wittenmyer, R.A.; Tuomi, M.; Butler, R.P.; Jones, H. R. A.; O'Anglada-Escude, G.; Horner, J.; Tinney, C.G.; Marshall, J.P.; Carter, B.D.; et al. (2014). "GJ 832c: A super-earth in the habitable zone". The Astrophysical Journal. 1406 (2): 5587. arXiv:1406.5587. Bibcode:2014ApJ...791..114W. doi:10.1088/0004-637X/791/2/114.
- ↑ B. C. Matthews; forthcoming study promised in Lestrade, J.-F.; Matthews, B. C.; Sibthorpe, B.; Kennedy, G. M.; Wyatt, M. C.; Bryden, G.; Greaves, J. S.; Thilliez, E.; Moro-Martín, A.; Booth, M.; Dent, W. R. F.; Duchêne, G.; Harvey, P. M.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Phillips, N. M.; Rodriguez, D. R.; Su, K. Y. L.; Wilner, D. J. (2012). "A DEBRIS Disk Around The Planet Hosting M-star GJ581 Spatially Resolved with Herschel". Astronomy and Astrophysics. 548: A86. arXiv:1211.4898. Bibcode:2012A&A...548A..86L. doi:10.1051/0004-6361/201220325.
- ↑ Schmitt, J. H. M. M.; Fleming, T. A.; Giampapa, M. S. (1995). "The X-ray view of the low-mass stars in the solar neighborhood". The Astrophysical Journal. 450 (9): 392–400. Bibcode:1995ApJ...450..392S. doi:10.1086/176149.
Coordinates: 21h 33m 33.9752s, −49° 00′ 32.422″