Generalized trigonometry

Ordinary trigonometry studies triangles in the Euclidean plane R2. There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers: right-angled triangle definitions, unit-circle definitions, series definitions, definitions via differential equations, definitions using functional equations. Generalizations of trigonometric functions are often developed by starting with one of the above methods and adapting it to a situation other than the real numbers of Euclidean geometry. Generally, trigonometry can be the study of triples of points in any kind of geometry or space. A triangle is the polygon with the smallest number of vertices, so one direction to generalize is to study higher-dimensional analogs of angles and polygons: solid angles and polytopes such as tetrahedrons and n-simplices.

Trigonometry

Higher-dimensions

Trigonometric functions

Other

See also

References

  1. Wildberger, N. J. (2009), Universal Hyperbolic Geometry I: Trigonometry, arXiv:0909.1377Freely accessible
  2. Thompson, K.; Dray, T. (2000), "Taxicab angles and trigonometry" (PDF), Pi Mu Epsilon Journal, 11 (2): 87–96, arXiv:1101.2917Freely accessible
  3. Herranz, Francisco J.; Ortega, Ramón; Santander, Mariano (2000), "Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry", Journal of Physics A, 33 (24): 4525–4551, arXiv:math-ph/9910041Freely accessible, doi:10.1088/0305-4470/33/24/309, MR 1768742
  4. Liu, Honghai; Coghill, George M. (2005), "Fuzzy Qualitative Trigonometry", 2005 IEEE International Conference on Systems, Man and Cybernetics (PDF), 2, pp. 1291–1296
  5. Gustafson, K. E. (1999), "A computational trigonometry, and related contributions by Russians Kantorovich, Krein, Kaporin", Вычислительные технологии, 4 (3): 73–83
  6. Karpenkov, Oleg (2008), "Elementary notions of lattice trigonometry", Mathematica Scandinavica, 102 (2): 161–205, arXiv:math/0604129Freely accessible, MR 2437186
  7. Aslaksen, Helmer; Huynh, Hsueh-Ling (1997), "Laws of trigonometry in symmetric spaces", Geometry from the Pacific Rim (Singapore, 1994), Berlin: de Gruyter, pp. 23–36, CiteSeerX 10.1.1.160.1580Freely accessible, MR 1468236
  8. Leuzinger, Enrico (1992), "On the trigonometry of symmetric spaces", Commentarii Mathematici Helvetici, 67 (2): 252–286, doi:10.1007/BF02566499, MR 1161284
  9. Masala, G. (1999), "Regular triangles and isoclinic triangles in the Grassmann manifolds G2(RN)", Rendiconti del Seminario Matematico Università e Politecnico di Torino., 57 (2): 91–104, MR 1974445
  10. Richardson, G. (1902-03-01). "The Trigonometry of the Tetrahedron". The Mathematical Gazette. 2 (32): 149–158. doi:10.2307/3603090. JSTOR 3603090.
  11. West, Bruce J.; Bologna, Mauro; Grigolini, Paolo (2003), Physics of fractal operators, Institute for Nonlinear Science, New York: Springer-Verlag, p. 101, ISBN 0-387-95554-2, MR 1988873
  12. Harkin, Anthony A.; Harkin, Joseph B. (2004), "Geometry of generalized complex numbers", Mathematics Magazine, 77 (2): 118–129, JSTOR 3219099, MR 1573734
  13. Yamaleev, Robert M. (2005), "Complex algebras on n-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics" (PDF), Advances in Applied Clifford Algebras, 15 (1): 123–150, doi:10.1007/s00006-005-0007-y, MR 2236628
  14. Antippa, Adel F. (2003), "The combinatorial structure of trigonometry" (PDF), International Journal of Mathematics and Mathematical Sciences (8): 475–500, doi:10.1155/S0161171203106230, MR 1967890
This article is issued from Wikipedia - version of the 11/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.