Evolutionary psychology of language
Evolutionary psychology of language is the study of the evolutionary history of language as a psychological faculty within the discipline of evolutionary psychology.
There are many competing theories of how language evolved. It stems from the belief that language development could result from an adaptation, an exaptation, or a by-product. Genetics also influence the study of the evolution of language. It has been speculated that the FOXP2 gene may be what gives humans the ability to develop grammar and syntax.
Language evolution theories
In the debate surrounding the evolutionary psychology of language, three sides emerge: those who believe in language as an adaptation, those who believe it is a by-product of another adaptation, and those who believe it is an exaptation.
Adaptation
Scientist and psychologists Steven Pinker and Paul Bloom argue that language as a mental faculty shares many likenesses with the complex organs of the body which suggests that, like these organs, language has evolved as an adaptation, since this is the only known mechanism by which such complex organs can develop. The complexity of the mechanisms, the faculty of language and the ability to learn language provides a comparative resource between the psychological evolved traits and the physical evolved traits.[1]
Pinker, though he mostly agrees with Noam Chomsky, a linguist and cognitive scientist, in arguing that the fact that children can learn any human language with no explicit instruction suggests that language, including most of grammar, is basically innate and that it only needs to be activated by interaction, but Pinker and Bloom argue that the organic nature of language strongly suggests that it has an adaptational origin.[2]
By-product/Spandrel
Noam Chomsky spearheaded the debate on the faculty of language as a cognitive by-product, or spandrel. As a linguist, rather than an evolutionary biologist, his theoretical emphasis was on the infinite capacity of speech and speaking: there are a fixed number of words, but there is an infinite combination of the words.[3] His analysis from this considers that the ability of our cognition to perceive infinite possibilities, or create infinite possibilities, helped give way to the extreme complexity found in our language.[3] Both Chomsky and Gould argue that the complexity of the brain is in itself an adaptation, and language arises from such complexities.[3] On the issue of whether language is best seen as having evolved as an adaptation or as a by product, evolutionary biologist W. Tecumseh Fitch, following Stephen J. Gould, argues that it is unwarranted to assume that every aspect of language is an adaptation, or that language as a whole is an adaptation.[4] He criticizes some strands of evolutionary psychology for suggesting a pan-adaptationist view of evolution, and dismisses Pinker and Bloom's question of whether "Language has evolved as an adaptation" as being misleading.[4] He argues instead that from a biological viewpoint the evolutionary origins of language is best conceptualized as being the probable result of a convergence of many separate adaptations into a complex system. A similar argument is made by Terrence Deacon who in The Symbolic Species argues that the different features of language have co-evolved with the evolution of the mind and that the ability to use symbolic communication is integrated in all other cognitive processes.[5]
Exaptation
Exaptations, like adaptations, are fitness-enhancing characteristics, but, according to Stephen Jay Gould, their purposes were appropriated as the species evolved. This can be for one of two reasons: either the trait’s original function was no longer necessary so the trait took on a new purpose or a trait that does not arise for a certain purpose, but later becomes important.[6] Typically exaptations have a specific shape and design which becomes the space for a new function.[6] The foundation of this argument comes from the low-lying position of the larynx in humans.[7] Other mammals have this same positioning of the larynx, but no other species has acquired language. This leads exaptationists to see an evolved modification away from its original purpose.[7]
Genes and language
Research has shown that “genetic constraints” on language evolution could have caused a “specialized” and “species-specific language module.[8] It is through this module that there are many specified “domain-specific linguistic properties,” such as syntax and agreement.[8] Adaptationists believe that language genes “coevolved with human language itself for the purpose of communication.”[8] This view suggests that the genes that are involved with language would only have coevolved in a very stable linguist environment. This shows that language could not have evolved in a rapidly changing environment because that type of environment would not have been stable enough for natural selection. Without natural selection, the genes would not have coevolved with the ability for language, and instead, would have come from “cultural conventions.”[8] The adaptationist belief that genes coevolved with language also suggests that there are no “arbitrary properties of language.” This is because they would have coevolved with language through natural selection.[8]
The Baldwin effect provides a possible explanation for how language characteristics that are learned over time could become encoded in genes. He suggested, like Darwin did, that organisms that can adapt a trait faster have a “selective advantage.”[8] As generations pass, less environmental stimuli is needed for organisms of the species to develop that trait. Eventually no environmental stimuli are needed and it is at this point that the trait has become “genetically encoded.”[8]
FOXP2 gene
The genetic and cognitive components of language have long been under speculation, only recently have linguists been able to point out a gene that may possibly explain how language works.[9] Evolutionary psychologists hold that the FOXP2 gene may well be associated with the evolution of human language. In the 1980s, psycholinguist Myrna Gopnik identified a dominant gene that causes language impairment in the KE family of Britain. The KE family has a mutation in the FOXP2, that makes them suffer from a speech and language disorder. It has been argued that the FOXP2 gene is the grammar gene, which is what allows humans the ability to form proper syntax and make our communication of higher quality. Children that grow up in a stable environment are able to develop highly proficient language without any instruction. Individuals with a mutation to their FOXP2 gene have trouble mastering complex sentences, and shows signs of developmental verbal dyspraxia.[9]
This gene most likely evolved in the hominin most likely after the hominin and the chimpanzee lines split, this accounts for the fact that humans are the only ones able to learn and understand grammar.[10] Humans have a unique allele of this gene, which has otherwise been closely conserved through most of mammalian evolutionary history. This unique allele seems to have first appeared between 100 and 200 thousand years ago, and it is now all but universal in humans.[10] This suggests that there was a speech evolved late in overall spectrum of human evolution.
Variation in human language
In the world there are nearly 7000 languages, there is great amount of variation and this variation is thought to have come about through cultural differentiation. There are four factors that are thought to be the reason as to why there is language variation between cultures: founder effects, drift, hybridization and adaptation. With the vast amounts of lands available different tribes began to form and to claim their territory, in order to differentiate themselves many of these groups made changes to their language and this how the evolution of languages began. There also tended to be drifts in the population a certain group would get lost and be isolated from the rest of the group, this group would lose touch with the other groups and before they knew there had been mutations in their language and a whole new language had been formed.[11]
Hybridization also played a big role in the language evolution, one group would come in contact with another tribe and they would pick up words and sounds from each other eventually leading to the formation of a new language. Adaptation would also play a role in the evolution of language differentiation, the environment and the circumstances were constantly changing therefore the groups had to adapt to the environment and their language had to adapt to it as well, it is all about maximizing fitness.[11]
Atkinson theorized that language may have originated in Africa. It is believed that it originated in Africa due to the fact that African languages have a greater variation of speech sounds than other languages, therefore these sounds are seen as the root for other languages that exist across the world.[12]
Communication in other animals
Research indicates that nonhuman animals (e.g., apes, dolphins, and songbirds) show evidence of language. Comparative studies of the sensory-motor system reveal that speech is not special to humans: nonhuman primates can discriminate between two different spoken languages.[13] Anatomical aspects of humans, particularly the descended larynx, has been believed to be unique to humans' capacity to speak. However, further research revealed that several other mammals have a descended larynx beside humans, which indicates that a descended larynx must not be the only anatomical feature needed for speech production.[13] Vocal imitation is not uniquely human as well.[13] Songbirds seem to acquire species-specific songs by imitating.[14][15] Because primates do not have a descended larynx, they lack vocal imitative capacity, which is why studies involving primates have taught them nonverbal means of communication, e.g., sign language.[13]
Koko and Nim Chimpsky are two apes that have successfully learned to use sign language, but not to the extent that a human being can. Nim is a chimpanzee that was taken in by a family in the 1970s and was raised as if he were a human child. Nim was able to master 150 signs, which were limited but useful. Koko was a gorilla that was taken in by a Berkley student. She was able to master 600 signs for generative communication. Koko and Nim were not able to develop speech due to the fact that they lack the larynx which is what distinguishes humans from other animals and allows them to speak.[13]
Gallery
-
Proto-Indo-European languages, c. 500 AD
See also
- Essay on the Origin of Languages
- Evolutionary anthropology
- Evolutionary linguistics
- Human evolution
- Language acquisition
- Linguistic anthropology
- Linguistic universals
- Neurobiological origins of language
- Origins of society
- Origin of language
- Origin of speech
- Physical anthropology
- Proto-language
- Proto-Human language
- Recent African origin of modern humans
- Signalling theory
- Social evolution
- Sociocultural evolution
- Symbolic culture
- Universal grammar
Notes
References
- ↑ Richardson,, R. (November 1996). "The prospects for an evolutionary psychology: Human language and human reasoning". Minds and Machines. Springer. 6 (4): 541–557. doi:10.1007/BF00389658. Retrieved 2 January 2014.
- ↑ Workman, Lance and Will Reader (2004) Evolutionary psychology: an introduction. Cambridge University Press p. 259.
- 1 2 3 Chomsky, N., Knowledge of Language: Its Nature, Origin and Use. Praeger, New York. (1986).
- 1 2 Fitch, W. T. (2011). The Evolution of Language. New York, NY: Cambridge University Press. p. 15. ISBN 052167736X.
- ↑ Deacon, T. The Symbolic Species. 1997.
- 1 2 Botha, Rudolf P (2001). "How much of language, if any, came about in the same sort of way as the brooding chamber in snails?". Language & Communication. 21 (3): 225–243. doi:10.1016/S0271-5309(01)00002-7.
- 1 2 Fitch, T., "Evolutionary Developmental Biology and Human Language Evolution: Constraints on Adaptation." "Evolutionary Biology". 39:4. pp. 613-30.
- 1 2 3 4 5 6 7 Chater, N.; Florencia, R.; Christiansen, M. H. "Restrictions on biological adaptation in language evolution". PNAS. 106 (4): 1015–1020. doi:10.1073/pnas.0807191106.
- 1 2 Fisher, S.E. & Scharff, C. (2009). "FOXP2 as a molecular window into speech and language." Cell Press pp.166-177.
- 1 2 Christianse, M. H. & Kirby, S. (2004). Language Evolution. Oxford University Press. pp. 215-216.
- 1 2 Levinson, SC.; Gray, RD. (March 2012). "Tools from evolutionary biology shed new light on the diversification of languages.". Trends Cogn Sci. 16 (3): 167–73. doi:10.1016/j.tics.2012.01.007. PMID 22336727.
- ↑ Bower, Bruce (2011). "Darwin's tongues: Languages, like genes, can tell evolutionary tales". Science News. 180 (11): 22–25. doi:10.1002/scin.5591801128. ISSN 0036-8423.
- 1 2 3 4 5 Hauser, M. D., et al. (2002). Science 298. pp. 1569-1579.
- ↑ Haesler S, Wada K, Nshdejan A, et al. (March 2004). "FoxP2 expression in avian vocal learners and non-learners". J. Neurosci. 24 (13): 3164–75. doi:10.1523/JNEUROSCI.4369-03.2004. PMID 15056696.
- ↑ Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C (December 2007). "Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X". PLoS Biol. 5 (12): e321. doi:10.1371/journal.pbio.0050321. PMC 2100148. PMID 18052609.