Ernst Kötter
Ernst Kötter | |
---|---|
Born |
Berlin | August 7, 1859
Died |
January 26, 1922 62)[1] Aachen | (aged
Residence | Berlin, Aachen (Germany) |
Fields | Mathematician |
Alma mater | Berlin University |
Thesis | Zur Theorie der Osculationen bei ebenen Curven 3. Ordnung (1884) |
Academic advisors | Weierstraß, Kronecker |
Notable awards | Price of the Berlin Royal Academy, 1886 |
Ernst Kötter was a German mathematician who graduated in 1884 from Berlin University. His treatise "Fundamentals of a purely geometrical theory of algebraic plane curves" gained the 1886 prize of the Berlin Royal Academy.[2] In 1901, he published his report on "The development of synthetic geometry from Monge to Staudt (1847)";[3] it had been sent to the press as early as 1897, but completion was deferred by Kötter's appointment to Aachen University and a subsequent persisting illness.[4] He constructed a mobile wood model to illustrate the theorems of Dandelin spheres.[5][6]
In a discussion with Schoenflies and Kötter, Hilbert reportedly uttered his famous quotation according to which points, lines, and planes in geometry could be named as well "tables, chairs, and beer mugs".[7]
Publications
- Ernst Kötter (Jun 1884). Beiträge zur Theorie der Osculationen bei ebenen Curven dritter Ordnung (PDF) (Ph.D.). Friedrich-Wilhelms-Universität Berlin.
- Ernst Kötter (1887). "Grundzüge einer rein geometrischen Theorie der algebraischen ebenen Kurven". Transactions of the Royal Academy of Berlin.
- Ernst Kötter (Oct 1888). "Die Hesse'sche Curve in rein geometrischer Behandlung" (PDF). Mathematische Annalen. 34: 123–149. doi:10.1007/bf01446793.
- Ernst Kötter (1891). "Einige Hauptsätze aus der Lehre von den Curven dritter Ordnung". Mathematische Annalen. 38: 287–297. doi:10.1007/bf01199255.
- Ernst Kötter (1892). "Ueber diejenigen Polyeder, die bei gegebener Gattung und gegebenem Volumen die kleinste Oberfläche besitzen. Erste Abhandlung.". Journal für die reine und angewandte Mathematik. 110: 198–229.
- Ernst Kötter (1900). "Construction der Oberfläche zweiter Ordnung, welche neun gegebene Punkte enthält". Jahresbericht der Deutschen Mathematiker-Vereinigung: 99–102.
References
- ↑ German National Library: Record Xml
- ↑ Norman Fraser (Feb 1888). "Kötter's synthetic geometry of algebraic curves". Proceedings of the Edinburgh Mathematical Society. 7: 46–61. doi:10.1017/s0013091500030364. Here: p.46
- ↑ Ernst Kötter (1901). Die Entwickelung der Synthetischen Geometrie von Monge bis auf Staudt (1847) (PDF). (2012 Reprint as ISBN 1275932649)
- ↑ Kötter (1901), Preface, p.VIII
- ↑ "Vermischtes (Miscellany)". Jahresbericht der Deutschen Mathematiker-Vereinigung. 16: 82. 1907.
- ↑ Illustration of Groningen University
- ↑ Otto Blumenthal (1935). David Hilbert, ed. Lebensgeschichte (PDF). Gesammelte Abhandlungen. 3. Julius Springer. pp. 388–429. Here: p.402-403