Divergence of the sum of the reciprocals of the primes
The sum of the reciprocals of all prime numbers diverges; that is:
This was proved by Leonhard Euler in 1737,[1] and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers.
There are a variety of proofs of Euler's result, including a lower bound for the partial sums stating that
for all natural numbers n. The double natural logarithm indicates that the divergence might be very slow, which is indeed the case. See Meissel–Mertens constant.
The harmonic series
First, we describe how Euler originally discovered the result. He was considering the harmonic series
He had already used the following "product formula" to show the existence of infinitely many primes.
(Here, the product is taken over all primes p; in the following, a sum or product taken over p always represents a sum or product taken over a specified set of primes, unless noted otherwise.)
Such infinite products are today called Euler products. The product above is a reflection of the fundamental theorem of arithmetic. Of course, the above "equation" is not necessary because the harmonic series is known (by other means) to diverge.
Euler noted that if there were only a finite number of primes, then the product on the right would clearly converge, contradicting the divergence of the harmonic series. (In modern language, we now say that the existence of infinitely many primes is reflected by the fact that the Riemann zeta function has a simple pole at s = 1.)
Proofs
First
Euler takes the above product formula and proceeds to make a sequence of audacious leaps of logic. First, he takes the natural logarithm of each side, then he uses the Taylor series expansion for ln(x) as well as the sum of a converging series:
for a fixed constant K < 1. Then he invokes the relation
which he explains, for instance in a later 1748 work,[2] by setting x=1 in the Taylor series expansion
This allows him to conclude
It is almost certain that Euler meant that the sum of the reciprocals of the primes less than n is asymptotic to ln(ln(n)) as n approaches infinity. It turns out this is indeed the case, and a more precise version of this fact was rigorously proved by Franz Mertens in 1874.[3] Thus Euler obtained a correct result by questionable means.
Second
The following proof by contradiction is due to Paul Erdős.
Let pi denote the ith prime number. Assume that the sum of the reciprocals of the primes converges; i.e.,
Then there exists a smallest positive integer k such that
For a positive integer x let Mx denote the set of those n in {1, 2, . . ., x} which are not divisible by any prime greater than pk (or equivalently all n ≤ x which are a product of powers of primes pi ≤ pk). We will now derive an upper and a lower estimate for |Mx|, the number of elements in Mx. For large x, these bounds will turn out to be contradictory.
Upper estimate
Every n in Mx can be written as n = r m2 with positive integers m and r, where r is square-free. Since only the k primes p1, …, pk can show up (with exponent 1) in the prime factorization of r, there are at most 2k different possibilities for r. Furthermore, there are at most √x possible values for m. This gives us the upper estimate
Lower estimate
The remaining x − |Mx| numbers in the set difference {1, 2, . . ., x} \ Mx are all divisible by a prime greater than pk. Let Ni,x denote the set of those n in {1, 2, . . ., x} which are divisible by the ith prime pi. Then
Since the number of integers in Ni,x is at most x/pi (actually zero for pi > x), we get
Using (1), this implies
Contradiction
When x ≥ 22k + 2, the estimates (2) and (3) cannot both hold, because .
Third
Here is another proof that actually gives a lower estimate for the partial sums; in particular, it shows that these sums grow at least as fast as log(log(n)). The proof is an adaptation of the product expansion idea of Euler. In the following, a sum or product taken over p always represents a sum or product taken over a specified set of primes.
The proof rests upon the following four inequalities:
- Every positive integer i can be uniquely expressed as the product of a square-free integer and a square. This gives the inequality
- where for every i between 1 and n the (expanded) product corresponds to the square-free part of i and the sum corresponds to the square part of i (see fundamental theorem of arithmetic).
- The upper estimate for the natural logarithm
- The lower estimate 1 + x < exp(x) for the exponential function, which holds for all x > 0.
- Let n ≥ 2. The upper bound (using a telescoping sum) for the partial sums (convergence is all we really need)
Combining all these inequalities, we see that
Dividing through by 5/3 and taking the natural logarithm of both sides gives
as desired. ∎
Using
(see Basel problem), the above constant ln (5/3) = 0.51082… can be improved to ln(π2/6) = 0.4977…; in fact it turns out that
where M = 0.261497… is the Meissel–Mertens constant (somewhat analogous to the much more famous Euler–Mascheroni constant).
Fourth
From Dusart's inequality, we get
Then
by the integral test for convergence. This shows that the series on the left diverges.
Partial sums
While the partial sums of the reciprocals of the primes eventually exceed any integer value, they never equal an integer.
One proof[4] is by induction: The first partial sum is which has the form where O and E refer to odd and even numbers respectively. If the nth partial sum has the form then the (n+1)st one equals for the (n+1)st prime since this repeats the odd-over-even form, this partial sum cannot be an integer (because 2 divides the denominator but not the numerator), and the induction continues.
Another proof rewrites the expression for the sum of the first n reciprocals of primes (or indeed the sum of the reciprocals of any set of primes) in terms of the least common denominator, which is the product of all these primes. Then each of these primes divides all but one of the numerator terms and hence does not divide the numerator itself; but each prime does divide the denominator. Thus the expression is irreducible and is non-integer.
See also
- Euclid's theorem that there are infinitely many primes
- Small set (combinatorics)
- Brun's theorem, on the convergent sum of reciprocals of the twin primes
- List of sums of reciprocals
References
- ↑ Leonhard Euler. "Variae observationes circa series infinitas". Commentarii Academiae Scientarum Petropolitanae 9 (1737), 160-188.
- ↑ Leonhard Euler. "Introductio in Analysin Infinitorum. Tomus Primus". Bousquet, Lausanne 1748. Exemplum 1, p. 228.
- ↑ Mertens, F. (1874). "Ein Beitrag zur analytischer Zahlentheorie". J. Reine. Angew. Math. 78: 46–62.
- ↑ Lord, Nick (2015). "Quick proofs that certain sums of fractions are not integers". The Mathematical Gazette. 99: 128–130. doi:10.1017/mag.2014.16.
- Sources
- William Dunham (1999). Euler The Master of Us All. MAA. pp. 61–79. ISBN 0-88385-328-0.