DVB-RCT

DVB-RCT (Digital Video Broadcasting - Return Channel Terrestrial), provides a method by which the DVB-T (and in theory DVB-T2 but DVB-T2 probably trialled first about 5 years after last DVB-RCT field trial) platform can become a bi-directional, asymmetric, data path using wireless between broadcasters and customers. DVB-T when completed with DVB-RCT can be used not only for Interactive TV (voting, quiz, etc.), but also for light IP telecommunication services. Various degrees of interactivity could be offered, without implying any return channel back from the user to the service provider: data carrousel or Electronic Programs Guides (EPG) are examples of such enhanced TV services which make use of “Local Interactivity”, without any return path from customer to provider. To implement new interactive services having a closely coupled and real-time relationship with the TV programs (e.g., interactive advertising, tele-voting, tele-quiz), a low latency return channel technology is mandatory, and this is the goal of the DVB-RCT. Without adding a cellular style network with about x20 more masts no Internet usage except about 1/20th speed of analogue dialup would be feasible.

Failure

By 2006 the main developer of DVB-RCT Runcom had abandoned it (no deployments due to Mobile Phone Penetration) and switched the expertise to portable WiMax Modems and Infrastructure, later adding LTE. Many people mistakenly think DVB-RCT would have allowed Viewers to browse the Internet. Partially the mistaken Internet belief was due to the "It's TV" Proposal in Ireland in 2000/2001 and RTE-NL (now 2RN) 1999 field trials assisted by Runcom.

But peak time speeds using existing TV mast infrastructures would have provided about 1200bit/s or less. It could only have been used for in program voting or purchase of broadcast advert items (TV or Teletext, or later MHP / MHEG5 broadcast), very little per user download content. The Cable version DVB-RCC never succeeded in competing against Cablelabs DOCSIS though Internet by Satellite did use DVB-RCS, but Ka-Sat and others since 2005 are deploying Satellite versions of DOCSIS.

Motivation

It was projected (in 2001) that revenues from TV commerce would exceed revenues from e-commerce in the home by 2008. T-commerce clearly requires a Return Path from the home back to the Digital TV Service Provider. The current scenario of UHF/VHF bands shows a very congested spectrum in several countries that could be a real problem for the introduction of new services.

Principal characteristics

Robust and flexible solution for DVB-T and DVB-T2

From a pure technical point of view, DVB-RCT is built around technologies for digital transmission and information theory; in addition to the benefits of first generation OFDM technology for broadband portable and mobile services, Multiple Access OFDM included in the DVB-RCT specification provides the following characteristics:

Physical parameters

Downstream Channel (DS) OFDM, ETS 300 744 (DVB-T) compliant
Return Interaction Channel Multiple Access OFDM (MA-OFDM)
Forward Interaction Channel (US) Embedded in DS, compliant with ETS 300 744 (DVB-T)
OFDM Carrier set 1024 (1K), 2048 (2K)
OFDM Carrier spacing (CS) ~1K, ~2K, ~4K
Transmission modes 6 modes (as combination of 3 CS and 2 Carrier set)
Carrier shaping Nyquist, Rectangular
Guard Interval 1/8, 1/16, 1/32 (for Rectangular shaping only)
Transmission Frames TF1, TF2
Data randomization PRBS with polynomial: 1+X14+x15
Modulation QPSK, 16QAM, 64QAM
Useful data payload per burst 18, 27, 36, 54, 81 bytes (1 burst = 144 modul. Symbols)
Channel codes Turbo or concatenated (Reed-Solomon + Convol.)
Interleaving Random Interleaver - PRBS with polynomial: 1+X3+x10
Burst Structures BS1, BS2, BS3
Frequency hopping for BS1 only (optional)
Medium Access Schemes MAS1, MAS2, MAS3 ( as combinations of BS and TF)
Net Bit rate /carrier (range) 0.6 kbit/s - 15 kbit/s (depending on the mode)
Service range Up to 65 km (cell radius)
Channelisation 6, 7, 8 MHz channels are supported

References

    This article is issued from Wikipedia - version of the 3/11/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.