Cetalkonium chloride

Cetalkonium chloride
Names
IUPAC name
Benzylhexadecyldimethylazanium chloride
Other names
Benzyldimethylhexadecylammonium chloride; Benzyldimethyl-n-hexadecylammonium chloride; Cetyldimethylbenzylammonium chloride
Identifiers
122-18-9
3D model (Jmol) Interactive image
ChemSpider 28943
ECHA InfoCard 100.004.116
EC Number 204-526-3
PubChem 31202
UN number 3261
Properties
C25H46ClN
Molar mass 396.10 g·mol−1
Appearance A white or almost white crystalline powder
Density approx. 0.4
Melting point 50°C
2mg/mL
Solubility alcohols, acetone, ethyl acetate, propylene glycol, sorbitol solutions, glycerol ether, triglycerides, mineral oils
Hazards
Safety data sheet FeF Chemical (archive.org)
GHS pictograms
H302, H312, H314, H400
P262, P305+351+338, P310, P280, P501, P273
R-phrases R21+R22, R34, R50
Lethal dose or concentration (LD, LC):
> 500mg/kg (oral, rat)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Cetalkonium chloride (CKC) is a quaternary ammonium compound of the alkyl-benzyldimethylammonium chloride family, the alkyl group having a chain length of C16 (16 carbons). It is used in pharmaceutical products either as an excipient (Cationorm, Retaine MGD) or as an active ingredient (Bonjela, Pansoral). It may be found in very small amount in the excipient benzalkonium chloride mixture (typically less than 5% of the total mixture). Cetalkonium chloride is purchased as a raw material in dry form as a white powder.

Applications

Cetalkonium chloride can be used in different applications depending on its concentration.

Anti-infective agent

It can be used as an active ingredient to relieve the pain of mouth ulcers and denture sores in buccal solutions or gels such as Pansoral or in Bonjela. The usual concentration in these products is 0.01% (w/w). However, it isn't known as a potent bactericidal compound, mainly because of its low solubility in water. For example, US and European pharmacopeias enforce suppliers of benzalkonium chloride to limit the amount of cetalkonium chloride in the mixture to less than 5% w/w.

Cationic surface-active agent

Cetalkonium chloride can also be used as a pharmaceutical excipient due to its amphiphilic property and cationic charge. For example, it has recently been included in a contact lens to bind an anionic active drug to serve as reservoir and extend the release rate of the molecule.[1] Most frequently, it is used as an emulsifier and cationic agent in ophthalmic nanoemulsions in products like Cationorm and Retaine MGD. Due to its high lipophilicity, cetalkonium chloride is strongly associated to oil nanodroplets at the oil/water interface in oil-in-water emulsions, hence providing a positive charge at the surface of the oil nanodroplets. This polarization of the nanodroplets stabilizes the emulsion by creating an electrostatic repulsion between the nanodroplets and is the driving force behind the biological adhesion of the nanodroplets to negatively charged cell epithelium in vivo.[2] In life science the cationic charge of cetalkonium is used to separate biological extracts according to their charge.[3][4]

Biological activity

Biological activity of cetalkonium chloride as excipient has been widely described in the scientific literature.[5][6] Cetalkonium chloride acts by creating a positive charge that provides bioadhesive properties of the cationic nanoemulsions on the negatively charged ocular surface. Hence, increasing the penetration of active ingredients formulated in cationic nanoemulsions into ocular tissues.[7] Even more, cetalkonium chloride cationic emulsions seem to improve healing of corneal lesions.[8]

Safety

Even though cetalkonium chloride is belongs to the family of benzalkonium chloride, the ophthalmic use of cetalkonium chloride cationic nanoemulsions have been shown to be safe.[9][10] These observations are explained by the fact that cetalkonium chloride present in oil-in-water emulsions is bound to the oil nanodroplets therefore sequestered from the water phase and not available to cause damages to ocular tissues.[11] Pansoral has been on the market since 1981 and Cationorm since 2008, both products being well accepted by patients.

Conversely, a 2015 study showed a "considerable" corneal toxicity in Cationorm.[12]

Regulatory

Cetalkonium is listed on the FDA OTC ingredient list updated April 2010.[13] The MHRA has published in 2012 the “Consolidated list of substances which are present in authorized medicines for general sale” in which CKC is cited. The highest authorized concentration is 0.1% when administered topically and in the mouth.[14]

References

  1. Bengani LC, Chauhan A. Extended delivery of an anionic drug by contact lens loaded with a cationic surfactant. Biomaterials. 2013 Apr;34(11):2814-21
  2. Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS. Successfully improving ocular drug delivery using the cationic nanoemulsion, Novasorb. J Drug Deliv. 2012
  3. Philipp S, Jakoby T, Tholey A, Janssen O, Leippe M, Gelhaus C. Cationic detergents enable the separation of membrane proteins of Plasmodium falciparum-infected erythrocytes by 2D gel electrophoresis. Electrophoresis. 2012 Apr;33(7):1120-8
  4. Nothwang HG, Schindler J. Two-dimensional separation of membrane proteins by 16-BAC-SDS-PAGE. Methods Mol Biol. 2009;528:269-77
  5. Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS. Successfully improving ocular drug delivery using the cationic nanoemulsion, Novasorb. J Drug Deliv. 2012
  6. Lallemand F, Daull P, Garrigue JS, Development of a cationic nanoemulsion platform (Novasorb) for ocular delivery; J das Neves, B Sarmento Editors, Mucosal delivery of biopharmaceuticals, Springer Science New York 2014
  7. Daull P, Lallemand F, Philips B, Lambert G, Buggage R, Garrigue JS. Distribution of cyclosporine A in ocular tissues after topical administration of cyclosporine A cationic emulsions to pigmented rabbits. Cornea. 2013 Mar;32(3):345-54
  8. Liang H, Baudouin C, Daull P, Garrigue JS, Buggage R, Brignole-Baudouin F. In vitro and in vivo evaluation of a preservative-free cationic emulsion of latanoprost in corneal wound healing models. Cornea. 2012 Nov;31(11):1319-29
  9. Liang, H., F. Brignole-Baudouin, et al. (2008). "Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits." Mol Vis 14: 204-16
  10. Amrane M, Creuzot-Garcher C, Robert PY, Ismail D, Garrigue JS, Pisella PJ, Baudouin C. Ocular tolerability and efficacy of a cationic emulsion in patients with mild to moderate dry eye disease - A randomised comparative study. J Fr Ophtalmol. 2014 Oct;37(8):589-98
  11. Daull P, Lallemand F, Garrigue JS. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J Pharm Pharmacol. 2014 Apr;66(4):531-41
  12. Pinheiro, Ralph; Panfil, Claudia; Schrage, Norbert; Dutescu, Ralf Michael (2015-10-01). "Comparison of the lubricant eyedrops Optive®, Vismed Multi®, and Cationorm® on the corneal healing process in an ex vivo model". European Journal of Ophthalmology. 25 (5): 379–384. doi:10.5301/ejo.5000593. ISSN 1724-6016. PMID 25790809.
  13. http://www.fda.gov/downloads/aboutfda/centersoffices/cder/ucm135688.pdf
  14. "Archived copy" (PDF). Archived from the original (PDF) on 2014-11-13. Retrieved 2014-11-12.

This article is issued from Wikipedia - version of the 11/18/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.